Interpolating between the Arithmetic-Geometric Mean and Cauchy-Schwarz matrix norm inequalities

نویسندگان

  • Koenraad M.R. Audenaert
  • Swapan Rana
چکیده

We prove an inequality for unitarily invariant norms that interpolates between the Arithmetic-Geometric Mean inequality and the Cauchy-Schwarz inequality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some topological indices of graphs and some inequalities

Let G be a graph. In this paper, we study the eccentric connectivity index, the new version of the second Zagreb index and the forth geometric–arithmetic index.. The basic properties of these novel graph descriptors and some inequalities for them are established.

متن کامل

Reverse Cauchy–schwarz Inequalities for Positive C∗-valued Sesquilinear Forms

We prove two new reverse Cauchy–Schwarz inequalities of additive and multiplicative types in a space equipped with a positive sesquilinear form with values in a C *-algebra. We apply our results to get some norm and integral inequalities. As a consequence, we improve a celebrated reverse Cauchy–Schwarz inequality due to G. Pólya and G. Szegö.

متن کامل

SOME PROPERTIES OF FUZZY HILBERT SPACES AND NORM OF OPERATORS

In the present paper we define the notion of fuzzy inner productand study the properties of the corresponding fuzzy norm. In particular, it isshown that the Cauchy-Schwarz inequality holds. Moreover, it is proved thatevery such fuzzy inner product space can be imbedded in a complete one andthat every subspace of a fuzzy Hilbert space has a complementary subspace.Finally, the notions of fuzzy bo...

متن کامل

When Cauchy and Hölder Met Minkowski: A Tour through Well-Known Inequalities

Many classical inequalities are just statements about the convexity or concavity of certain (hidden) underlying functions. This is nicely illustrated by Hardy, Littlewood, and Pólya [5] whose Chapter III deals with “Mean values with an arbitrary function and the theory of convex functions,” and by Steele [12] whose Chapter 6 is called “Convexity—The third pillar.” Yet another illustration is th...

متن کامل

Some Inequalities for Unitarily Invariant Norms

This paper aims to present some inequalities for unitarily invariant norms. In section 2, we give a refinement of the Cauchy-Schwarz inequality for matrices. In section 3, we obtain an improvement for the result of Bhatia and Kittaneh [Linear Algebra Appl. 308 (2000) 203-211]. In section 4, we establish an improved Heinz inequality for the Hilbert-Schmidt norm. Finally, we present an inequality...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015